import os from deepsearcher.llm.base import BaseLLM class OpenAILLM(BaseLLM): """ OpenAI language model implementation. This class provides an interface to interact with OpenAI's language models through their API. Attributes: model (str): The OpenAI model identifier to use. client: The OpenAI client instance. """ def __init__(self, model: str = "o1-mini", **kwargs): """ Initialize an OpenAI language model client. Args: model (str, optional): The model identifier to use. Defaults to "o1-mini". **kwargs: Additional keyword arguments to pass to the OpenAI client. - api_key: OpenAI API key. If not provided, uses OPENAI_API_KEY environment variable. - base_url: OpenAI API base URL. If not provided, uses OPENAI_BASE_URL environment variable. """ from openai import OpenAI self.model = model if "api_key" in kwargs: api_key = kwargs.pop("api_key") else: api_key = os.getenv("OPENAI_API_KEY") if "base_url" in kwargs: base_url = kwargs.pop("base_url") else: base_url = os.getenv("OPENAI_BASE_URL") self.client = OpenAI(api_key=api_key, base_url=base_url, **kwargs) def chat(self, messages: list[dict], stream_callback = None) -> str: """ Send a chat message to the OpenAI model and get a response. Args: messages (List[Dict]): A list of message dictionaries, typically in the format [{"role": "system", "content": "..."}, {"role": "user", "content": "..."}] Returns: response (str) """ completion = self.client.chat.completions.create( model=self.model, messages=messages, stream=True ) response = "" for chunk in completion: stream_response = chunk.choices[0].delta.content if stream_response: response += stream_response if stream_callback: stream_callback(stream_response) return response