import os from typing import Dict, List from deepsearcher.llm.base import BaseLLM, ChatResponse class OpenAILLM(BaseLLM): """ OpenAI language model implementation. This class provides an interface to interact with OpenAI's language models through their API. Attributes: model (str): The OpenAI model identifier to use. client: The OpenAI client instance. """ def __init__(self, model: str = "o1-mini", **kwargs): """ Initialize an OpenAI language model client. Args: model (str, optional): The model identifier to use. Defaults to "o1-mini". **kwargs: Additional keyword arguments to pass to the OpenAI client. - api_key: OpenAI API key. If not provided, uses OPENAI_API_KEY environment variable. - base_url: OpenAI API base URL. If not provided, uses OPENAI_BASE_URL environment variable. """ from openai import OpenAI self.model = model if "api_key" in kwargs: api_key = kwargs.pop("api_key") else: api_key = os.getenv("OPENAI_API_KEY") if "base_url" in kwargs: base_url = kwargs.pop("base_url") else: base_url = os.getenv("OPENAI_BASE_URL") self.client = OpenAI(api_key=api_key, base_url=base_url, **kwargs) def chat(self, messages: List[Dict]) -> ChatResponse: """ Send a chat message to the OpenAI model and get a response. Args: messages (List[Dict]): A list of message dictionaries, typically in the format [{"role": "system", "content": "..."}, {"role": "user", "content": "..."}] Returns: ChatResponse: An object containing the model's response and token usage information. """ completion = self.client.chat.completions.create( model=self.model, messages=messages, ) return ChatResponse( content=completion.choices[0].message.content, total_tokens=completion.usage.total_tokens, )