# Configuration Overview DeepSearcher provides flexible configuration options for all its components. You can customize the following aspects of the system: ## 📋 Components | Component | Purpose | Documentation | |-----------|---------|---------------| | **LLM** | Large Language Models for query processing | [LLM Configuration](llm.md) | | **Embedding Models** | Text embedding for vector retrieval | [Embedding Models](embedding.md) | | **Vector Database** | Storage and retrieval of vector embeddings | [Vector Database](vector_db.md) | | **File Loader** | Loading and processing various file formats | [File Loader](file_loader.md) | | **Web Crawler** | Gathering information from web sources | [Web Crawler](web_crawler.md) | ## 🔄 Configuration Method DeepSearcher uses a consistent configuration approach for all components: ```python from deepsearcher.configuration import Configuration, init_config # Create configuration config = Configuration() # Set provider configurations config.set_provider_config("[component]", "[provider]", {"option": "value"}) # Initialize with configuration init_config(config=config) ``` For detailed configuration options for each component, please visit the corresponding documentation pages linked in the table above.