import sys, os from pathlib import Path script_directory = Path(__file__).resolve().parent.parent sys.path.append(os.path.abspath(script_directory)) import logging httpx_logger = logging.getLogger("httpx") # disable openai's logger output httpx_logger.setLevel(logging.WARNING) current_dir = os.path.dirname(os.path.abspath(__file__)) # Customize your config here from deepsearcher.configuration import Configuration, init_config config = Configuration() init_config(config=config) # # Load your local data # # Hint: You can load from a directory or a single file, please execute it in the root directory of the deep searcher project from deepsearcher.offline_loading import load_from_local_files load_from_local_files( paths_or_directory=os.path.join(current_dir, "data/WhatisMilvus.pdf"), collection_name="milvus_docs", collection_description="All Milvus Documents", # force_new_collection=True, # If you want to drop origin collection and create a new collection every time, set force_new_collection to True ) # Query from deepsearcher.online_query import query question = 'Write a report comparing Milvus with other vector databases.' answer, retrieved_results, consumed_token = query(question) print(answer) # # get consumed tokens, about: 2.5~3w tokens when using openai gpt-4o model # print(f"Consumed tokens: {consumed_token}")