import logging import os from deepsearcher.offline_loading import load_from_local_files from deepsearcher.online_query import query from deepsearcher.configuration import Configuration, init_config # Suppress unnecessary logging from third-party libraries logging.getLogger("httpx").setLevel(logging.WARNING) # (Optional) Set API keys (ensure these are set securely in real applications) os.environ['UNSTRUCTURED_API_KEY'] = '***************' os.environ['UNSTRUCTURED_API_URL'] = '***************' def main(): # Step 1: Initialize configuration config = Configuration() # Configure Vector Database (Milvus) and File Loader (UnstructuredLoader) config.set_provider_config("vector_db", "Milvus", {}) config.set_provider_config("file_loader", "UnstructuredLoader", {}) # Apply the configuration init_config(config) # Step 2: Load data from a local file or directory into Milvus input_file = "your_local_file_or_directory" # Replace with your actual file path collection_name = "Unstructured" collection_description = "All Milvus Documents" load_from_local_files(paths_or_directory=input_file, collection_name=collection_name, collection_description=collection_description) # Step 3: Query the loaded data question = "What is Milvus?" # Replace with your actual question result = query(question) print(result) if __name__ == "__main__": main()