You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
93 lines
3.7 KiB
93 lines
3.7 KiB
from typing import List, Optional, Tuple
|
|
|
|
from deepsearcher.agent import RAGAgent
|
|
from deepsearcher.llm.base import BaseLLM
|
|
from deepsearcher.utils import log
|
|
from deepsearcher.vector_db import RetrievalResult
|
|
|
|
RAG_ROUTER_PROMPT = """Given a list of agent indexes and corresponding descriptions, each agent has a specific function.
|
|
Given a query, select only one agent that best matches the agent handling the query, and return the index without any other information.
|
|
|
|
## Question
|
|
{query}
|
|
|
|
## Agent Indexes and Descriptions
|
|
{description_str}
|
|
|
|
Only return one agent index number that best matches the agent handling the query:
|
|
"""
|
|
|
|
|
|
class RAGRouter(RAGAgent):
|
|
"""
|
|
Routes queries to the most appropriate RAG agent implementation.
|
|
|
|
This class analyzes the content and requirements of a query and determines
|
|
which RAG agent implementation is best suited to handle it.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
llm: BaseLLM,
|
|
rag_agents: List[RAGAgent],
|
|
agent_descriptions: Optional[List[str]] = None,
|
|
):
|
|
"""
|
|
Initialize the RAGRouter.
|
|
|
|
Args:
|
|
llm: The language model to use for analyzing queries.
|
|
rag_agents: A list of RAGAgent instances.
|
|
agent_descriptions (list, optional): A list of descriptions for each agent.
|
|
"""
|
|
self.llm = llm
|
|
self.rag_agents = rag_agents
|
|
self.agent_descriptions = agent_descriptions
|
|
if not self.agent_descriptions:
|
|
try:
|
|
self.agent_descriptions = [
|
|
agent.__class__.__description__ for agent in self.rag_agents
|
|
]
|
|
except Exception:
|
|
raise AttributeError(
|
|
"Please provide agent descriptions or set __description__ attribute for each agent class."
|
|
)
|
|
|
|
def _route(self, query: str) -> Tuple[RAGAgent, int]:
|
|
description_str = "\n".join(
|
|
[f"[{i + 1}]: {description}" for i, description in enumerate(self.agent_descriptions)]
|
|
)
|
|
prompt = RAG_ROUTER_PROMPT.format(query=query, description_str=description_str)
|
|
chat_response = self.llm.chat(messages=[{"role": "user", "content": prompt}])
|
|
try:
|
|
selected_agent_index = int(self.llm.remove_think(chat_response.content)) - 1
|
|
except ValueError:
|
|
# In some reasoning LLM, the output is not a number, but a explaination string with a number in the end.
|
|
log.warning(
|
|
"Parse int failed in RAGRouter, but will try to find the last digit as fallback."
|
|
)
|
|
selected_agent_index = (
|
|
int(self.find_last_digit(self.llm.remove_think(chat_response.content))) - 1
|
|
)
|
|
|
|
selected_agent = self.rag_agents[selected_agent_index]
|
|
log.color_print(
|
|
f"<think> Select agent [{selected_agent.__class__.__name__}] to answer the query [{query}] </think>\n"
|
|
)
|
|
return self.rag_agents[selected_agent_index], chat_response.total_tokens
|
|
|
|
def retrieve(self, query: str, **kwargs) -> Tuple[List[RetrievalResult], int, dict]:
|
|
agent, n_token_router = self._route(query)
|
|
retrieved_results, n_token_retrieval, metadata = agent.retrieve(query, **kwargs)
|
|
return retrieved_results, n_token_router + n_token_retrieval, metadata
|
|
|
|
def query(self, query: str, **kwargs) -> Tuple[str, List[RetrievalResult], int]:
|
|
agent, n_token_router = self._route(query)
|
|
answer, retrieved_results, n_token_retrieval = agent.query(query, **kwargs)
|
|
return answer, retrieved_results, n_token_router + n_token_retrieval
|
|
|
|
def find_last_digit(self, string):
|
|
for char in reversed(string):
|
|
if char.isdigit():
|
|
return char
|
|
raise ValueError("No digit found in the string")
|
|
|