You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

40 lines
1.4 KiB

2 weeks ago
import logging
import os
from deepsearcher.offline_loading import load_from_local_files
from deepsearcher.online_query import query
from deepsearcher.configuration import Configuration, init_config
# Suppress unnecessary logging from third-party libraries
logging.getLogger("httpx").setLevel(logging.WARNING)
# (Optional) Set API keys (ensure these are set securely in real applications)
os.environ['UNSTRUCTURED_API_KEY'] = '***************'
os.environ['UNSTRUCTURED_API_URL'] = '***************'
def main():
# Step 1: Initialize configuration
config = Configuration()
# Configure Vector Database (Milvus) and File Loader (UnstructuredLoader)
config.set_provider_config("vector_db", "Milvus", {})
config.set_provider_config("file_loader", "UnstructuredLoader", {})
# Apply the configuration
init_config(config)
# Step 2: Load data from a local file or directory into Milvus
input_file = "your_local_file_or_directory" # Replace with your actual file path
collection_name = "Unstructured"
collection_description = "All Milvus Documents"
load_from_local_files(paths_or_directory=input_file, collection_name=collection_name, collection_description=collection_description)
# Step 3: Query the loaded data
question = "What is Milvus?" # Replace with your actual question
result = query(question)
print(result)
if __name__ == "__main__":
main()